Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro
نویسندگان
چکیده
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.
منابع مشابه
P141: The Role of Microglia in Cortical Spreading Depression in Migraine
Migraine is a disorder that afflicts nearly one tenth of the population. Involving both nervous and vascular system, it has been found as a prominent factor of disability. The migraine attacks may be initiated in the brainstem or may begin peripherally in the meninges while the role of cortical activation preceding an attack is also debated. Although available treatments, more studies on migrai...
متن کاملTNF-α and Microglial Hormetic Involvement in Neurological Health & Migraine.
Environmental enrichment, i.e., increased intellectual, social, and physical activity makes brain more resilient to subsequent neurological disease. The mechanisms for this effect remain incompletely defined, but evidence shows tumor necrosis factor-alpha (TNF-α) is involved. TNF-α, at acutely high levels, possesses the intrinsic capacity to enhance injury associated with neurological disease. ...
متن کاملSpreading depression requires microglia and is decreased by their M2a polarization from environmental enrichment.
Microglia play an important role in fine-tuning neuronal activity. In part, this involves their production of tumor necrosis factor-alpha (TNFα), which increases neuronal excitability. Excessive synaptic activity is necessary to initiate spreading depression (SD). Increased microglial production of proinflammatory cytokines promotes initiation of SD, which, when recurrent, may play a role in co...
متن کاملEnhanced Excitatory Transmission at Cortical Synapses as the Basis for Facilitated Spreading Depression in CaV2.1 Knockin Migraine Mice
Migraine is a common disabling brain disorder. A subtype of migraine with aura (familial hemiplegic migraine type 1: FHM1) is caused by mutations in Ca(V)2.1 (P/Q-type) Ca(2+) channels. Knockin mice carrying a FHM1 mutation show increased neuronal P/Q-type current and facilitation of induction and propagation of cortical spreading depression (CSD), the phenomenon that underlies migraine aura an...
متن کاملBrivaracetam inhibits spreading depression in rat neocortical slices in vitro
Epilepsy and migraine are episodic neurological disorders with marked co-morbidity, making migraine common among epileptic patients. Conversely, several antiepileptic drugs (AEDs) are used as migraine-preventive medication. Cortical spreading depression (CSD) represents a transient suppression of bioelectric activity and is considered a key event in migraine and stroke. This study assessed the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2011